
SLIM EXCEPTIONAL SETS AND THE

ASYMPTOTIC FORMULA IN WARING’S PROBLEM

Trevor D. Wooley∗

1. Introduction. By avoiding a conventional application of Bessel’s inequality
in favour of explicitly controlling an exponential sum over the exceptional set, in
our previous work [9, 10], we have exploited additional variables so as to enhance
exceptional set estimates in various additive problems of Waring type. In this
memoir we turn to the problem of establishing the expected asymptotic formula
in Waring’s problem. The methods introduced herein, although discussed in the
context of the asymptotic formula, should nonetheless provide a useful model for
future excursions involving exceptional sets in additive problems.

Denote by Rs,k(n) the number of representations of a positive integer n as the
sum of s kth powers of positive integers. A heuristic application of the circle method
suggests that for k > 3 and s > k + 1, one should have the asymptotic relation

Rs,k(n) =
Γ(1 + 1/k)s

Γ(s/k)
Ss,k(n)ns/k−1 + o(ns/k−1), (1.1)

where

Ss,k(n) =
∞∑

q=1

q∑
a=1

(a,q)=1

(
q−1

q∑
r=1

e(ark/q)
)s

e(−an/q), (1.2)

and e(z) denotes exp(2πiz). With the objective of determining how frequently the
formula (1.1) might fail, we define an associated exceptional set estimate as follows.
When ψ(t) is a function of a positive variable t, denote by Ẽs,k(N ;ψ) the number
of integers n with 1 6 n 6 N for which∣∣∣Rs,k(n)− Γ(1 + 1/k)s

Γ(s/k)
Ss,k(n)ns/k−1

∣∣∣ > ns/k−1ψ(n)−1.

When ψ(t) grows no faster than a suitable power of log t, it follows from work of
Vaughan [5, 6] that whenever s > 2k, one has Ẽs,k(N ;ψ) � 1 (that is, the expected
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asymptotic formula holds with 2k or more variables). Incorporating such work into
familiar classical methods, it follows that whenever s > 2k−1 and δ is a sufficiently
small positive number, one has

Ẽs,k(N ;ψ) � N1−(s22−k−2)/k(logN)−δψ(N)2. (1.3)

Subsequent work of Heath-Brown [4] and Boklan [1] permits the refinement of such
estimates for k > 6, and thus one finds that for s > 7 ·2k−3 one has Ẽs,k(N ;ψ) � 1,
and indeed one may establish the estimate Ẽs,k(N ;ψ) = o(N) for s > 7 · 2k−4.
Finally, we comment that methods of Vinogradov in their most modern incarnations
(see Wooley [8] and Ford [3]) yield estimates superior to those recorded in (1.3) for
k > 9. Indeed, one has Ẽs,k(N ;ψ) � 1 for s > k2(log k + log log k + O(1)) and
Ẽs,k(N ;ψ) = o(N) for s > 1

2k
2(log k + log log k +O(1)).

In previous work devoted to sums of cubes (see Wooley [10]), we established that
whenever ψ(t) = O((log t)1−δ) for some positive number δ, then Ẽ7,3(N ;ψ) �ε

N4/9+ε, thereby improving on the classical estimate Ẽ7,3(N ;ψ) � N1/2 available
via (1.3). We now consider estimates for Ẽs,k(N ;ψ) for the remaining values of k of
interest, beginning in §2 with a discussion of sums of biquadrates. It is convenient
here, and elsewhere, to refer to a function ψ(t) as being a function of uniform
growth with exponent δ, when ψ(t) is a function of a positive variable t, increasing
monotonically to infinity, and satisfying the condition that when t is large, one has
ψ(t) = O(tδ).

Theorem 1.1. Suppose that ψ4(t) is a function of uniform growth with exponent
δ, for some sufficiently small positive number δ. Then for each positive number ε,
one has

Ẽ15,4(N ;ψ4) �δ N
7/16+εψ4(N)2.

For comparison, the classical bound available via (1.3) yields an estimate marginally
sharper than Ẽ15,4(N ;ψ4) � N9/16ψ4(N)2.

In §3 we turn our attention to the asymptotic formula in Waring’s problem for
fifth powers, and establish the estimates recorded in the following theorem.

Theorem 1.2. Suppose that ψ5(t) is a function of uniform growth with exponent
δ, for some sufficiently small positive number δ. Then for each positive number ε,
one has

Ẽs,5(N ;ψ5) �δ N
αs+εψ5(N)2 (29 6 s 6 31),

where
α29 = 23/40, α30 = 11/20, α31 = 3/8.

The classical approach leading to (1.3) yields conclusions similar to those recorded
in Theorem 1.2, save with α29 = 27/40, α30 = 13/20 and α31 = 5/8.

Moving next, in §4, to sums of sixth powers, we are able to wield the aforemen-
tioned work of Heath-Brown and Boklan to good account.
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Theorem 1.3. Suppose that ψ6(t) is a function of uniform growth with exponent
δ, for some sufficiently small positive number δ. Then for each positive number ε,
one has

Ẽs,6(N ;ψ6) �δ N
βs+εψ6(N)2 (52 6 s 6 55),

where
βs = 2/3− (s− 51)/96 (52 6 s 6 55).

In §5 we are able to incorporate additional savings for k = 7, at least when s is
close enough to 112.

Theorem 1.4. Suppose that ψ7(t) is a function of uniform growth with exponent
δ, for some sufficiently small positive number δ. Then for each positive number ε,
one has

Ẽs,7(N ;ψ7) �δ N
γs+εψ7(N)2 (101 6 s 6 111),

where

γs =
{

5/7− (s− 100)/224, when 101 6 s 6 108,
4/7− (s− 108)/224, when 109 6 s 6 111.

Finally, in §6 we have at our disposal further resources with which to improve
our estimates for exceptional sets associated with eighth powers, especially when s
is close to 224.

Theorem 1.5. Suppose that ψ8(t) is a function of uniform growth with exponent
δ, for some sufficiently small positive number δ. Then for each positive number ε,
one has

Ẽs,8(N ;ψ8) �δ N
δs+εψ8(N)2 (197 6 s 6 223),

where

δs =


3/4− (s− 196)/512, when 197 6 s 6 212,
5/8− (s− 212)/512, when 213 6 s 6 220,
1/2− (s− 220)/512, when 221 6 s 6 223.

Throughout, the letter ε will denote a sufficiently small positive number. We use
� and � to denote Vinogradov’s well-known notation, implicit constants depend-
ing at most on ε, unless otherwise indicated. In an effort to simplify our analysis,
we adopt the convention that whenever ε appears in a statement, then we are im-
plicitly asserting that for each ε > 0 the statement holds for sufficiently large values
of the main parameter. Note that the “value” of ε may consequently change from
statement to statement, and hence also the dependence of implicit constants on ε.
Finally, we write [z] to denote the largest integer not exceeding z.

2. Sums of biquadrates. We begin with an account of the proof of Theorem 1.1,
this permitting the introduction of notation and auxiliary estimates of utility both
here and hereafter. We model the initial stages of our argument on the framework
introduced by Brüdern, Kawada and Wooley [2] in their work on exceptional sets
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in thin sequences. For the moment, we consider arbitrary integers k and s with
4 6 k 6 8 and s > 3 · 2k−2, though later in this section we specialise to the case
k = 4 and s = 15. Let N be a large positive number, and let ψ = ψk(t) be a
function of the type described in the statements of Theorems 1.1–1.5. We denote
by Zs,k(N) the set of integers n with N/2 < n 6 N for which the inequality∣∣∣Rs,k(n)− Γ(1 + 1/k)s

Γ(s/k)
Ss,k(n)ns/k−1

∣∣∣ > ns/k−1ψk(n)−1 (2.1)

holds, and we abbreviate card(Zs,k(N)) to Zs,k.
Write Pk = [N1/k] and define

fk(α) =
∑

16x6Pk

e(αxk).

Then by orthogonality, for each integer n with N/2 < n 6 N one has

Rs,k(n) =
∫ 1

0

fk(α)se(−nα)dα. (2.2)

Let M = Mk denote the union of the intervals

Mk(q, a) = {α ∈ [0, 1) : |qα− a| 6 (2k)−1PkN
−1},

with 0 6 a 6 q 6 (2k)−1Pk and (a, q) = 1. Then it follows from Theorem 4.4 of
Vaughan [7] that whenever N/2 < n 6 N , one has∫

M

fk(α)se(−nα)dα =
Γ(1 + 1/k)s

Γ(s/k)
Ss,k(n)ns/k−1 +O(ns/k−1−2δ), (2.3)

where Ss,k(n) denotes the singular series defined in (1.2). Note here our use of
the implicit assumption that δ is a sufficiently small positive number. Now define
m = mk by writing mk = [0, 1) \ Mk. Then for n ∈ Zs,k(N), it follows from (2.1),
(2.2), (2.3) and our assumed upper bound ψk(t) = O(tδ), that∣∣∣∫

m

fk(α)se(−nα)dα
∣∣∣ > 1

2n
s/k−1ψk(n)−1. (2.4)

Define the complex number ηn = ηn(s, k) by taking ηn = 0 for n 6∈ Zs,k(N), and
when n ∈ Zs,k(N) by means of the equation∣∣∣∫

m

fk(α)se(−nα)dα
∣∣∣ = ηn(s, k)

∫
m

fk(α)se(−nα)dα.

Plainly, one has |ηn| = 1 whenever ηn is non-zero. Thus, it follows from (2.4) that

Ns/k−1ψk(N)−1card(Zs,k(N)) �
∑

N/2<n6N

ηn

∫
m

fk(α)se(−nα)dα

=
∫

m

fk(α)sKs,k(−α)dα, (2.5)



SLIM EXCEPTIONAL SETS 5

where the exponential sum Ks,k(α) is defined by

Ks,k(α) =
∑

N/2<n6N

ηn(s, k)e(nα). (2.6)

Our strategy is to estimate the integral on the right hand side of (2.5), and
thereby obtain an upper bound for Zs,k. Before advancing towards this goal in the
particular case in which k = 4 and s = 15, we introduce an auxiliary mean value
estimate of use also in subsequent sections.

Lemma 2.1. Suppose that k > 2, that 1 6 j 6 k − 1, and that ε > 0. Then one
has ∫ 1

0

|fk(α)2
j

Ks,k(α)2|dα� P 2j+ε
k (P−j−1

k Z2
s,k + P−1

k Zs,k). (2.7)

Proof. Let ∆j denote the jth iterate of the forward differencing operator, so that
whenever φ is a function of a real variable z, one has

∆1(φ(z);h) = φ(z + h)− φ(z),

and when J > 1,

∆J+1(φ(z);h1, . . . , hJ+1) = ∆1(∆J(φ(z);h1, . . . , hJ);hJ+1).

It follows via a modest computation that

∆J(zk;h) = h1 . . . hJpJ(z;h),

where pJ is a homogeneous polynomial in z and h of total degree k − J , in which
the coefficient of zk−J is k!/(k − J)!. By the Weyl differencing lemma (see, for
example, Lemma 2.3 of Vaughan [7]), one has

|fk(α)|2
j

6 (2Pk)2
j−j−1

∑
|h1|<Pk

· · ·
∑

|hj |<Pk

Tj ,

where
Tj =

∑
x∈Ij

e(αh1 . . . hjpj(x;h)),

and Ij = Ij(h) denotes an interval of integers, possibly empty, contained in [1, Pk].
On recalling (2.6), therefore, it follows from orthogonality that the integral on the
left hand side of (2.7) is bounded above by the number of integral solutions of the
equation

h1 . . . hjpj(z;h) = n1 − n2, (2.8)

with |hi| < Pk (1 6 i 6 j), 1 6 z 6 Pk and nl ∈ Zs,k(N) (l = 1, 2), and with each
solution being counted with weight

(2Pk)2
j−j−1.
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Consider a solution z, h, n of the equation (2.8) satisfying the associated con-
ditions. There are plainly O(P j−1

k ) choices of h in which one at least of the hi is
zero, and in such circumstances one necessarily has n1 = n2. Given any one of the
O(Z2

s,k) possible choices for n1 and n2 with n1 6= n2, meanwhile, an elementary
divisor function estimate shows that there are O(P ε

k ) permissible choices of z and
h satisfying (2.8). We thus deduce that the total number, T0, of solutions of (2.8)
satisfies

T0 � P j
kZs,k + P ε

kZ
2
s,k.

Consequently, on recalling the weights associated with our upper bound for the
integral on the left hand side of (2.7), we conclude that∫ 1

0

|fk(α)2
j

Ks,k(α)2|dα� P 2j−j−1
k (P j

kZs,k + P ε
kZ

2
s,k).

The conclusion of the lemma follows immediately.

We now restrict attention to the situation in which k = 4 and s = 15, and
establish the estimate for Ẽ15,4(N ;ψ4) claimed in the statement of Theorem 1.1.
Observe first that by applying Schwarz’s inequality on the right hand side of (2.5),
we obtain the inequality

N11/4ψ4(N)−1Z15,4 � I
1/2
1 I

1/2
2 , (2.9)

where
I1 =

∫
m

|f4(α)|26dα

and

I2 =
∫ 1

0

|f4(α)4K15,4(α)2|dα.

But Weyl’s inequality (see, for example, Lemma 2.4 of Vaughan [7]) yields the
upper bound

sup
α∈m

|f4(α)| � P
7/8+ε
4 ,

and Hua’s lemma (see Lemma 2.5 of Vaughan [7]) establishes that∫ 1

0

|f4(α)|16dα� P 12+ε
4 .

Thus we deduce that

I1 �
(

sup
α∈m

|f4(α)|
)10

∫ 1

0

|f4(α)|16dα

� (P 7/8+ε
4 )10P 12+ε

4 � P
83/4+ε
4 .
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On substituting the latter estimate into (2.9), and applying Lemma 2.1 with
j = 2, we find that

N11/4ψ4(N)−1Z15,4 � N83/32+ε(N1/4Z2
15,4 +N3/4Z15,4)1/2,

whence
Z15,4 � Z15,4ψ4(N)Nε−1/32 + Z

1/2
15,4ψ4(N)N7/32+ε.

Thus, on recalling that for some sufficiently small positive number δ one has ψ4(t) =
O(tδ), it follows that

Z15,4 � N7/16+εψ4(N)2,

and the conclusion of Theorem 1.1 follows by summing over dyadic intervals.

3. Sums of fifth powers. The proof of Theorem 1.2 may be completed in two
of the three cases by adjusting the argument applied in the previous section. The
third case considered in Theorem 1.2, however, requires a new mean value estimate
similar to that provided by Lemma 2.1.

Lemma 3.1. Suppose that k > 3, that 2 6 j 6 k − 1, and that ε > 0. Then one
has ∫ 1

0

|fk(α)3·2
j−1

Ks,k(α)2|dα� P 3·2j−1+ε
k (P−j−1

k Z2
s,k + P−2

k Zs,k). (3.1)

Proof. Applying Weyl differencing as in the proof of Lemma 2.1, we find by orthog-
onality that in this instance, the integral on the left hand side of (3.1) is bounded
above by the number of integral solutions of the equation

h1 . . . hjpj(z;h) = n1 − n2 +
2j−2∑
i=1

(xk
i − yk

i ), (3.2)

with |hl| < Pk (1 6 l 6 j), 1 6 z 6 Pk, 1 6 xi, yi 6 Pk (1 6 i 6 2j−2) and
nm ∈ Zs,k(N) (m = 1, 2), and with each solution being counted with weight

(2Pk)2
j−j−1.

Consider a solution z,h,x,y,n of the equation (3.2) satisfying the associated
conditions. There are plainly O(P j−1

k ) choices of h in which one at least of the hl

is zero, and in such circumstances one has

2j−2∑
i=1

(xk
i − yk

i ) = n2 − n1. (3.3)

By orthogonality, it follows that the number, T1, of such solutions is at most

P j
k

∫ 1

0

|fk(α)2
j−1

Ks,k(α)2|dα.
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Consequently, we find from Lemma 2.1 that

T1 � P 2j−1+j+ε
k (P−j

k Z2
s,k + P−1

k Zs,k). (3.4)

Given any one of the
O(Z2

s,kP
2j−1

k )

possible choices of n,x,y for which the equation (3.3) does not hold, meanwhile, an
elementary divisor function estimate shows that there are O(P ε

k ) permissible choices
of z and h satisfying (3.2). We thus deduce that the number, T2, of solutions of
this second type satisfies

T2 � P 2j−1+ε
k Z2

s,k. (3.5)

On recalling the weights associated with our upper bound for the integral on the
left hand side of (3.1), we conclude from (3.4) and (3.5) that∫ 1

0

|fk(α)3·2
j−1

Ks,k(α)2|dα� P 2j−j−1
k (T1 + T2)

� P 3·2j−1−1+ε
k (P−j

k Z2
s,k + P−1

k Zs,k).

The conclusion of the lemma is now immediate.

We initiate our proof of Theorem 1.2 by recalling the inequality (2.5). Let s be
an integer with s > 29, and apply Schwarz’s inequality to (2.5) to obtain the upper
bound

N (s−5)/5ψ5(N)−1Zs,5 � I
1/2
3 I

1/2
4 , (3.6)

where
I3 =

∫
m

|f5(α)|2s−8dα

and

I4 =
∫ 1

0

|f5(α)8Ks,5(α)2|dα.

But Weyl’s inequality yields the upper bound

sup
α∈m

|f5(α)| � P
15/16+ε
5 ,

and Hua’s lemma reveals that∫ 1

0

|f5(α)|32dα� P 27+ε
5 ,

and thus we obtain

I3 �
(

sup
α∈m

|f5(α)|
)2s−40

∫ 1

0

|f5(α)|32dα

� P
2s−13−(s−20)/8+ε
5 . (3.7)



SLIM EXCEPTIONAL SETS 9

On substituting the latter estimate into (3.6), and applying Lemma 2.1 with
j = 3, we arrive at the upper bound

N (s−5)/5ψ5(N)−1Zs,5 � N (s−5/2)/5−(s−20)/80+ε(N−4/5Z2
s,5 +N−1/5Zs,5)1/2,

whence
Zs,5 � Zs,5ψ5(N)Nε−(s−28)/80 + Z

1/2
s,5 ψ5(N)Nε−(s−52)/80. (3.8)

On recalling that for some sufficiently small positive number δ one has ψ5(t) =
O(tδ), it follows from (3.8) with s = 29 that

Z29,5 � N23/40+εψ5(N)2, (3.9)

and similarly with s = 30, we find that

Z30,5 � N11/20+εψ5(N)2. (3.10)

When s = 31 we proceed along a slightly different path, now applying Schwarz’s
inequality to (2.5) in the shape

N26/5ψ5(N)−1Z31,5 � I
1/2
5 I

1/2
6 , (3.11)

where
I5 =

∫
m

|f5(α)|50dα

and

I6 =
∫ 1

0

|f5(α)12K31,5(α)2|dα.

Here the estimate
I5 � P

351/8+ε
5

follows via the argument leading to (3.7), and hence on substituting this estimate
into (3.11), and applying Lemma 3.1 with j = 3, we deduce that

N26/5ψ5(N)−1Z31,5 � N447/80+ε(N−4/5Z2
31,5 +N−2/5Z31,5)1/2.

Consequently, one has

Z31,5 � Z31,5ψ5(N)Nε−1/80 + Z
1/2
31,5ψ5(N)N3/16+ε.

Then on recalling that for some sufficiently small positive number δ one has ψ5(t) =
O(tδ), one may conclude that

Z31,5 � N3/8+εψ5(N)2. (3.12)

The proof of Theorem 1.2 is completed by collecting together (3.9), (3.10) and
(3.12), and summing over dyadic intervals.
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4. Sums of sixth powers. We turn our attention next to the proof of Theorem
1.3, and this entails the use of technology introduced by Heath-Brown [4] for the
investigation of Waring’s problem for kth powers, with k > 6. Since these new
estimates will be crucial also in our analysis relevant to seventh and eighth powers,
we take the liberty of providing a somewhat general analysis. An account of such
a treatment has the potential to encompass much space, and here we economise by
referring closely to an account due to Boklan [1] devoted to a slightly more precise
analysis, the relevant details being more easily extracted from this account.

Our starting point in this discussion is again the upper bound (2.5), but instead
of handling the minor arcs m directly, we employ a somewhat more sophisticated
analysis based on the argument of Heath-Brown [4] as sharpened by Boklan [1]. In
this context, when r is a non-negative integer, we write

Ωr,k =
∫ 1

0

|fk(α)2rKs,k(α)2|dα.

Lemma 4.1. Suppose that k > 6, and that s, t, u, v, w are non-negative integers
with

s = 7 · 2k−4 + t+ u and s = 3 · 2k−3 + [(k + 1)/2] + v + w.

Then for each ε > 0 one has∫
m

|fk(α)sKs,k(α)|dα�P
7·2k−4−k/2+ε
k

(
P

1−(8/3)2−k

k

)t

Ω1/2
u,k

+ P
3·2k−3+[(k+1)/2]−k/2+ε
k (P 1−21−k

k )vΩ1/2
w,k.

Proof. Define the narrow set of minor arcs n to be the set of numbers α ∈ [0, 1) with
the property that whenever a ∈ Z and q ∈ N satisfy (a, q) = 1 and |qα−a| 6 P 3−k

k ,
then one has q > 1

4P
3
k . The work of Heath-Brown [4] (see Theorem 1 of [4], or

equation (6.4) of Boklan [1]) shows that

sup
α∈n

|fk(α)| � P
1−(8/3)2−k+ε
k . (4.1)

Moreover, Theorem 2 of Heath-Brown [4] shows that∫ 1

0

|fk(α)|7·2
k−3

dα� P 7·2k−3−k+ε
k . (4.2)

An application of Schwarz’s inequality in combination with (4.1) and (4.2) therefore
reveals that∫

n

|fk(α)sKs,k(α)|dα 6
(
sup
α∈n

|fk(α)|
)t(∫ 1

0

|fk(α)|7·2
k−3

dα
)1/2

Ω1/2
u,k

� (P 1−(8/3)2−k+ε
k )t(P 7·2k−3−k+ε

k )1/2Ω1/2
u,k . (4.3)
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The analysis of the set N = m \ n complementary to n involves a division into
sets I(q, Zv), with a classification of available numbers q according to membership
in a set Υv, the precise definitions of which need not concern us here. For the
application at hand we may be expedient and extract only the information relevant
to our needs, ignoring superfluous details. Thus one finds that when α belongs to
the subset N1 of N corresponding to the sets I(q, Zv) with q 6∈ Υv, one has

|fk(α)| � P
1−(8/3)2−k+ε
k

(see equation (8.3) of Boklan [1]). A comparison with (4.1) leads from here to the
estimate∫

N1

|fk(α)sKs,k(α)|dα� (P 1−(8/3)2−k+ε
k )t(P 7·2k−3−k+ε

k )1/2Ω1/2
u,k , (4.4)

via an argument parallel to the deduction of (4.3) from (4.1). In order to estimate
the contribution arising from the complementary set N2 = N \ N1, meanwhile,
one may make use of the argument of Boklan [1] leading to equation (10.2), and
ultimately (10.3), of that paper. Thus one deduces that∫

N2

|fk(α)|6·2
k−3+2[(k+1)/2]+2vdα� (P 1−21−k+ε

k )2vP
6·2k−3+2[(k+1)/2]−k+ε
k .

An application of Schwarz’s inequality consequently yields the upper bound∫
N2

|fk(α)sKs,k(α)|dα 6
(∫

N2

|fk(α)|6·2
k−3+2[(k+1)/2]+2vdα

)1/2

Ω1/2
w,k

� (P 1−21−k+ε
k )vP

3·2k−3+[(k+1)/2]−k/2
k Ω1/2

w,k. (4.5)

Since, plainly, the set m is the union of n, N1 and N2, the conclusion of the
lemma is immediate from (4.3), (4.4) and (4.5).

We now return to the proof of Theorem 1.3, wherein we suppose that k = 6.
Observe first that when h is a positive integer and s = 51+h, we may apply Lemma
4.1 with t = 15 + h, v = 16 + h and u = w = 8 in order to obtain the upper bound∫

m

|f6(α)sKs,6(α)|dα� P
79/2+(31/32)h+ε
6 Ω1/2

8,6 .

Consequently, on making use of Lemma 2.1 with j = 4 in order to estimate Ω8,6,
we find from (2.5) that

N (45+h)/6ψ6(N)−1Zs,6 � N (95+2h)/12−h/192+ε(N−5/6Z2
s,6 +N−1/6Zs,6)1/2.

We therefore deduce that

Zs,6 � Zs,6ψ6(N)Nε−h/192 + Z
1/2
s,6 ψ6(N)N1/3−h/192+ε.

On recalling that for some sufficiently small positive number δ one has ψ6(t) =
O(tδ), it follows that

Z51+h,6 � N2/3−h/96+εψ6(N)2,

and the proof of Theorem 1.3 follows on summing over dyadic intervals.
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5. Sums of seventh powers. The argument required to dispose of the proof
of Theorem 1.4 requires no tools beyond those developed already in §§2–4, and so
we launch our proof immediately. Suppose first that h is a positive integer and
s = 100 + h. On taking t = 28 + h, v = 32 + h and u = w = 16, we deduce from
Lemma 4.1 that ∫

m

|f7(α)sKs,7(α)|dα� P
80+(63/64)h+ε
7 Ω1/2

16,7.

Applying Lemma 2.1 with j = 5 to provide an upper bound for Ω16,7, we find from
(2.5) that

N (93+h)/7ψ7(N)−1Zs,7 � N (96+h)/7−h/448+ε(N−6/7Z2
s,7 +N−1/7Zs,7)1/2,

whence
Zs,7 � Zs,7ψ7(N)Nε−h/448 + Z

1/2
s,7 ψ7(N)N5/14−h/448+ε.

On recalling that for some sufficiently small positive number δ one has ψ7(t) =
O(tδ), we conclude that

Z100+h,7 � N5/7−h/224+εψ7(N)2.

The conclusion of Theorem 1.4 is therefore immediate for 101 6 s 6 108 on sum-
ming over dyadic intervals.

Suppose next that h is a positive integer and s = 108+h. We now put t = 28+h,
v = 32 + h and u = w = 24, and conclude from Lemma 4.1 that∫

m

|f7(α)sKs,7(α)|dα� P
80+(63/64)h+ε
7 Ω1/2

24,7.

On this occasion we apply Lemma 3.1 with j = 5 to provide an upper bound for
Ω24,7, and hence deduce from (2.5) that

N (101+h)/7ψ7(N)−1Zs,7 � N (104+h)/7−h/448+ε(N−6/7Z2
s,7 +N−2/7Zs,7)1/2.

Consequently, one obtains

Zs,7 � Zs,7ψ7(N)Nε−h/448 + Z
1/2
s,7 ψ7(N)N2/7−h/448+ε.

On recalling that for some sufficiently small positive number δ one has ψ7(t) =
O(tδ), we infer that

Z108+h,7 � N4/7−h/224+εψ7(N)2.

The conclusion of Theorem 1.4 for 109 6 s 6 111 now follows on summing over
dyadic intervals.
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6. Sums of eighth powers. Before embarking on the proof of Theorem 1.5, we
complete our arsenal of auxiliary lemmata with one final estimate of flavour similar
to Lemmata 2.1 and 3.1.

Lemma 6.1. Suppose that k > 4, that 3 6 j 6 k − 1, and that ε > 0. Then one
has ∫ 1

0

|fk(α)7·2
j−2

Ks,k(α)2|dα� P 7·2j−2+ε
k (P−j−1

k Z2
s,k + P−3

k Zs,k). (6.1)

Proof. We apply Weyl differencing as in the proof of Lemma 2.1, and conclude from
orthogonality that the integral on the left hand side of (6.1) is bounded above by
the number of integral solutions of the equation

h1 . . . hjpj(z;h) = n1 − n2 +
3·2j−3∑

i=1

(xk
i − yk

i ), (6.2)

with |hl| < Pk (1 6 l 6 j), 1 6 z 6 Pk, 1 6 xi, yi 6 Pk (1 6 i 6 3 · 2j−3) and
nm ∈ Zs,k(N) (m = 1, 2), and with each solution being counted with weight

(2Pk)2
j−j−1.

Consider a solution z,h,x,y,n of the equation (6.2) satisfying the associated
conditions. There are O(P j−1

k ) choices of h in which one at least of the hl is zero,
and then one has

3·2j−3∑
i=1

(xk
i − yk

i ) = n2 − n1. (6.3)

By orthogonality, the number, T3, of such solutions is at most

P j
k

∫ 1

0

|fk(α)3·2
j−2

Ks,k(α)2|dα.

Then Lemma 3.1 yields the upper bound

T3 � P 3·2j−2+j+ε
k (P−j

k Z2
s,k + P−2

k Zs,k). (6.4)

Given any one of the O(Z2
s,kP

3·2j−2

k ) possible choices of n,x,y for which (6.3) does
not hold, on the other hand, a divisor function estimate shows that there are O(P ε

k )
permissible choices of z and h satisfying (6.2). Consequently, the number, T4, of
solutions of this type satisfies

T4 � P 3·2j−2+ε
k Z2

s,k. (6.5)
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Reintroducing the weights associated with our upper bound for the integral on
the left hand side of (6.1), we find from (6.4) and (6.5) that∫ 1

0

|fk(α)7·2
j−2

Ks,k(α)2|dα� P 2j−j−1
k (T3 + T4)

� P 7·2j−2−1+ε
k (P−j

k Z2
s,k + P−2

k Zs,k).

The conclusion of the lemma now follows immediately.

Our starting point in the proof of Theorem 1.5 is again the inequality (2.5),
though of course we may now suppose that k = 8. We take h to be a positive
integer, and put s = 196+h. Then applying Lemma 4.1 with t = 52+h, v = 64+h
and u = w = 32, we find that∫

m

|f8(α)sKs,8(α)|dα� P
319/2+(127/128)h+ε
8 Ω1/2

32,8.

Applying Lemma 2.1 with j = 6 to provide an upper bound for Ω32,8, we find from
(2.5) that

N (188+h)/8ψ8(N)−1Zs,8 � N (383+2h)/16−h/1024+ε(N−7/8Z2
s,8 +N−1/8Zs,8)1/2,

whence
Zs,8 � Zs,8ψ8(N)Nε−h/1024 + Z

1/2
s,8 ψ8(N)N3/8−h/1024+ε.

On recalling that for some sufficiently small positive number δ one has ψ8(t) =
O(tδ), we conclude that

Z196+h,8 � N3/4−h/512+εψ8(N)2,

and the conclusion of Theorem 1.5 follows for 197 6 s 6 212 on summing over
dyadic intervals.

Suppose next that h is a positive integer and s = 212+h. We now put t = 52+h,
v = 64 + h and u = w = 48, and discover from Lemma 4.1 that∫

m

|f8(α)sKs,8(α)|dα� P
319/2+(127/128)h+ε
8 Ω1/2

48,8.

Applying now Lemma 3.1 with j = 6 to provide an upper bound for Ω48,8, we
conclude from (2.5) that

N (204+h)/8ψ8(N)−1Zs,8 � N (415+2h)/16−h/1024+ε(N−7/8Z2
s,8 +N−1/4Zs,8)1/2,

and from this we infer that

Zs,8 � Zs,8ψ8(N)Nε−h/1024 + Z
1/2
s,8 ψ8(N)N5/16−h/1024+ε.
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On recalling again that for some sufficiently small positive number δ one has ψ8(t) =
O(tδ), we may again conclude that

Z212+h,8 � N5/8−h/512+εψ8(N)2,

and this establishes the conclusion of Theorem 1.5 for 213 6 s 6 220, on summing
over dyadic intervals.

Finally, suppose that h is a positive integer and s = 220 + h. We now put
t = 52 + h, v = 64 + h and u = w = 56, and discern from Lemma 4.1 that∫

m

|f8(α)sKs,8(α)|dα� P
319/2+(127/128)h+ε
8 Ω1/2

56,8.

Wielding Lemma 6.1 with j = 6 on this occasion to provide an upper bound for
Ω56,8, we deduce from (2.5) that

N (212+h)/8ψ8(N)−1Zs,8 � N (431+2h)/16−h/1024+ε(N−7/8Z2
s,8 +N−3/8Zs,8)1/2,

and from this we infer that

Zs,8 � Zs,8ψ8(N)Nε−h/1024 + Z
1/2
s,8 N

1/4−h/1024+ε.

Thus, on recalling that there is a sufficiently small positive number δ for which
ψ8(t) = O(tδ), we can conclude that

Z220+h,8 � N1/2−h/512+εψ8(N)2.

The conclusion of Theorem 1.5 follows for 221 6 s 6 223 on summing over dyadic
intervals, and thus the proof of Theorem 1.5 is at last complete in all details.
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